LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

N+ implantation induce cytocompatibility of shape-controlled three-dimensional self-assembly graphene.

Photo from wikipedia

AIM The aim of the present research was to synthesize N+ implanted 3D self-assembly graphene (N+/3D-SGHs) to overcome the weaknesses of graphene (small sizes and poor hydrophilicity) in tissue engineering… Click to show full abstract

AIM The aim of the present research was to synthesize N+ implanted 3D self-assembly graphene (N+/3D-SGHs) to overcome the weaknesses of graphene (small sizes and poor hydrophilicity) in tissue engineering scaffolds. MATERIALS & METHODS N+/3D-SGHs was achieved by ion implantation on one-step hydrothermal synthesized 3D self-assembly graphene (3D-SGHs), and N+/3D-SGHs with different doses of nitrogen ions (1 × 1016 ions/cm2, 1 × 1018 ions/cm2 and 1 × 1020 ions/cm2), which adjusted by nitrogen ion beam intensity. RESULTS N+/3D-SGHs, as scaffolds, provide stereo space and hydrophilic groups for mouse-fibroblast cells (L929) growth and proliferation. Notably, N+/3D-SGHs with the N+ injected quantity of 1 × 1020 ions/cm2 displayed the highest protein-adhesion strength, cell viability and proliferation, which supported its good cytocompatibility. CONCLUSION This study demonstrated N+/3D-SGHs as a promising and effective tissue scaffold that might have applications in biomedicine.

Keywords: ions cm2; self assembly; assembly graphene; implantation; cytocompatibility

Journal Title: Nanomedicine
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.