LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Theranostic micelles combined with multiple strategies to effectively overcome multidrug resistance.

Photo by schluditsch from unsplash

AIM To develop precise targeting and versatile Fe3O4@SiO2-P123/PTX-ZnPc nanoparticles (FSP-PTX-ZnPc NPs) to reverse paclitaxel (PTX)-induced multidrug resistance in breast cancer. MATERIALS & METHODS PTX and zinc (II) phthalocyanine (ZnPc) co-loaded… Click to show full abstract

AIM To develop precise targeting and versatile Fe3O4@SiO2-P123/PTX-ZnPc nanoparticles (FSP-PTX-ZnPc NPs) to reverse paclitaxel (PTX)-induced multidrug resistance in breast cancer. MATERIALS & METHODS PTX and zinc (II) phthalocyanine (ZnPc) co-loaded FSP-PTX-ZnPc NPs were designed. The resulting multifunctional NPs were evaluated systematically in vitro and in vivo, and the mechanism of drug-resistance reversal was investigated. RESULTS The NPs enhanced drug uptake in MCF-7/PDR cells by increasing drug solubility and impairing P-glycoprotein efflux. Additionally, magnetic targeting and enhanced permeation and retention (EPR) effect enhanced drug accumulation in tumor, facilitating the chemotherapeutic and photodynamic therapy effects. Moreover, FSP-PTX-ZnPc NPs could penetrate the blood-brain barrier, a desirable trait for brain disease therapy. CONCLUSION The multifunctional FSP-PTX-ZnPc NPs are an effective tool for overcoming drug resistance in breast cancer.

Keywords: fsp ptx; drug; znpc; resistance; znpc nps; ptx znpc

Journal Title: Nanomedicine
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.