LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Potential treatment of Parkinson's disease using new-generation carbon nanotubes: a biomolecular in silico study.

Photo from wikipedia

Background: One of the underlying mechanisms of Parkinson's disease is the aggregation of α-synuclein proteins, including amyloids and Lewy bodies in the brain. Aim: To study the inhibitory effect of doped… Click to show full abstract

Background: One of the underlying mechanisms of Parkinson's disease is the aggregation of α-synuclein proteins, including amyloids and Lewy bodies in the brain. Aim: To study the inhibitory effect of doped carbon nanotubes (CNTs) on amyloid aggregation. Materials & methods: Molecular dynamics tools were utilized to simulate the influence of CNTs doped with phosphorus, nitrogen and bromine and nitrogen on the formation of α-synuclein amyloid. Results: The CNTs exhibited strong interactions with α-synuclein, with phosphorus-doped CNTs having the most substantial interactions. Conclusion: Doped-CNTs, especially phosphorus-doped carbon nanotube could effectively prevent α-synuclein amyloid formation, thus, it could be considered as a potential treatment for Parkinson's disease. However, further in vitro and clinical investigations are required.

Keywords: potential treatment; treatment parkinson; carbon nanotubes; disease; parkinson disease

Journal Title: Nanomedicine
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.