LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Bedaquiline fumarate microemulsion: formulation optimization, rheological characterization and in vitro studies.

Aim: Bedaquiline fumarate (BQF), an antitubercular drug, shows limited bioavailability due to solubility-limited intestinal absorption. In this research, the authors formulated a BQF-loaded microemulsion to improve BQF's oral bioavailability. Methods: Microemulsion was prepared… Click to show full abstract

Aim: Bedaquiline fumarate (BQF), an antitubercular drug, shows limited bioavailability due to solubility-limited intestinal absorption. In this research, the authors formulated a BQF-loaded microemulsion to improve BQF's oral bioavailability. Methods: Microemulsion was prepared by a spontaneous emulsification method and evaluated for thermodynamic stability, size, dispersibility, transmittance, rheology, microrheology, drug release, cytotoxicity and cellular uptake. Results: Microemulsion showed an average globule size of 26.50 ± 6.29 nm with spherical geometry and revealed gel-sol-gel behavior in microrheological studies. Cytotoxicity and cell uptake studies in Caco-2 cells showed that BQF microemulsion was cytocompatible at the highest concentration of 500 μg/ml with significantly higher cellular uptake than control. Conclusion: The present study indicates that BQF microemulsion could be explored further for effective treatment of multidrug-resistant tuberculosis.

Keywords: bedaquiline fumarate; microemulsion; microemulsion formulation; formulation optimization; optimization rheological; fumarate microemulsion

Journal Title: Nanomedicine
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.