LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effective treatment of retinal neovascular leakage with fusogenic porous silicon nanoparticles delivering VEGF-siRNA.

Photo from wikipedia

Aim: To evaluate an intravitreally injected nanoparticle platform designed to deliver VEGF-A siRNA to inhibit retinal neovascular leakage as a new treatment for proliferative diabetic retinopathy and diabetic macular edema.… Click to show full abstract

Aim: To evaluate an intravitreally injected nanoparticle platform designed to deliver VEGF-A siRNA to inhibit retinal neovascular leakage as a new treatment for proliferative diabetic retinopathy and diabetic macular edema. Materials & methods: Fusogenic lipid-coated porous silicon nanoparticles loaded with VEGF-A siRNA, and pendant neovascular integrin-homing iRGD, were evaluated for efficacy by intravitreal injection in a rabbit model of retinal neovascularization. Results: For 12 weeks post-treatment, a reduction in vascular leakage was observed for treated diseased eyes versus control eyes (p = 0.0137), with a corresponding reduction in vitreous VEGF-A. Conclusion: Fusogenic lipid-coated porous silicon nanoparticles siRNA delivery provides persistent knockdown of VEGF-A and reduced leakage in a rabbit model of retinal neovascularization as a potential new intraocular therapeutic.

Keywords: silicon nanoparticles; porous silicon; treatment; leakage; vegf sirna

Journal Title: Nanomedicine
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.