Background: Regulatory authorities around the world have introduced incentives to improve the speed-to-market of innovative therapies. Aim & methods: To better understand the capacity and portfolio planning decisions of autologous… Click to show full abstract
Background: Regulatory authorities around the world have introduced incentives to improve the speed-to-market of innovative therapies. Aim & methods: To better understand the capacity and portfolio planning decisions of autologous cell therapies and particularly the impact of fast-tracking designations, this paper describes a mixed-integer linear programming approach for the optimization of capacity investment and portfolio selection decisions to maximize the net present value of a candidate portfolio of therapies under different regulatory programs. Results: The illustrative example shows that fast-track designations allow a 25% earlier breakeven, 42-86% higher net present value over a 20-year horizon with earlier upfront capital and reduce the portfolio's sensitivity to uncertainties. Conclusion: Fast-track designations are effective in providing commercialization incentives, but high capital risks given the compressed timeline should be better considered.
               
Click one of the above tabs to view related content.