LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Priming mesenchymal stromal cells with neurotrophic factors boosts the neuro-regenerative potential of their secretome.

Photo by kellysikkema from unsplash

Aim: To explore the neuroprotective potential of the secretome (conditioned medium, CM) derived from neurotrophic factors-primed mesenchymal stromal cells (MSCs; primed CM) using an endoplasmic reticulum (ER) stress-induced in vitro… Click to show full abstract

Aim: To explore the neuroprotective potential of the secretome (conditioned medium, CM) derived from neurotrophic factors-primed mesenchymal stromal cells (MSCs; primed CM) using an endoplasmic reticulum (ER) stress-induced in vitro model system. Methods: Establishment of ER-stressed in vitro model, immunofluorescence microscopy, real-time PCR, western blot. Results: Exposure of ER-stressed Neuro-2a cells to the primed-CM significantly restored the neurite outgrowth parameters and improved the expression of neuronal markers like Tubb3 and Map2a in them compared with the naive CM. Primed CM also suppressed the induction of apoptotic markers Bax and Sirt1, inflammatory markers Cox2 and NF-κB, and stress kinases such as p38 and SAPK/JNK in the stress-induced cells. Conclusion: The secretome from primed MSCs significantly restored ER stress-induced loss of neuro-regenesis.

Keywords: neurotrophic factors; stress; mesenchymal stromal; secretome; potential secretome; stromal cells

Journal Title: Regenerative medicine
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.