LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synthesis and Theoretical Studies of a New Insensitive Explosive, 2’-Methyl-3-nitro-2’H-[1,3’-bi(1,2,4-triazole)]-5,5’-diamine

A new insensitive energetic material 2’-methyl-3-nitro-2’H-[1,3’bi(1,2,4-triazole)]-5,5’-diamine (1) was prepared by a three-step synthesis from commercially available chemicals. The energetic title compound was comprehensively characterized by various means, including FT-IR, multinuclear… Click to show full abstract

A new insensitive energetic material 2’-methyl-3-nitro-2’H-[1,3’bi(1,2,4-triazole)]-5,5’-diamine (1) was prepared by a three-step synthesis from commercially available chemicals. The energetic title compound was comprehensively characterized by various means, including FT-IR, multinuclear (1H, 13C, 14N) NMR spectroscopy, elemental analysis, HPLC and thermal analysis. The sensitivities of the synthesized material towards various external stimuli (impact, friction) were determined according to the BAM method. The optimized structure and related thermodynamic parameters were obtained at the DFT-B3LYP/6-31+G** theoretical level. The detonation properties of the material were also predicted according to the Kamlet-Jacobs formulae and the Monte-Carlo method. The results show that the density, heat of formation, detonation velocity, detonation pressure, impact sensitivity and purity were 1.83 g/cm3, 369 kJ/mol, 7.52 km/s, 25.4 GPa, 82.3 J and 97.7%, respectively. In addition, the compound was an insensitive high explosive which could meet the requirements of high energetic materials.

Keywords: triazole diamine; new insensitive; methyl nitro; nitro triazole

Journal Title: Central European Journal of Energetic Materials
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.