A method for the construction of initial atomic models of nanocrystals with extrinsic grain boundary dislocations (EGBDs) in grain boundaries (GBs) for molecular dynamics (MD) simulations is developed. The method… Click to show full abstract
A method for the construction of initial atomic models of nanocrystals with extrinsic grain boundary dislocations (EGBDs) in grain boundaries (GBs) for molecular dynamics (MD) simulations is developed. The method is realized for f.c.c. nanocrystals with columnar grains having common crystallographic axis [112] parallel to the column axis and thus divided only by [112] tilt GBs. This system is convenient for studies of interactions between GBs and lattice dislocations, since each grain can be deformed by edge dislocations of only one slip system, which have lines parallel to the [112] axis. In order to introduce extrinsic dislocations to the boundaries of a selected grain, its contour is assumed to be strained by a given shear strain γ so that a contour of a freely sheared grain is formed. This contour is filled in by atoms of a f.c.c. lattice with [112] direction parallel to the column axis and then the grain thus formed is subjected to an elastic shear strain −γ. This results in a deformed grain having the original shape, on the boundaries of which precursors of EGBDs are formed. In order to prevent these precursors from spontaneous annihilation during MD relaxation, one can temporarily fix GB atoms, or apply a proper external stress, or do both. A case study is carried out using two different protocols of MD relaxation to determine atomic structures and energies of nonequilibrium GBs.
               
Click one of the above tabs to view related content.