Materials based on CeO2-La2O3-Eu2O3 and La2O3-Eu2O3 systems are promising candidates for a wide range of applications, but the phase relationship has not been studied systematically previously. The phase relations in… Click to show full abstract
Materials based on CeO2-La2O3-Eu2O3 and La2O3-Eu2O3 systems are promising candidates for a wide range of applications, but the phase relationship has not been studied systematically previously. The phase relations in the CeO2-La2O3-Eu2O3 ternary system at 1500?C and binary La2O3-Eu2O3 system at 1600-1500?C were studied in air by X-ray diffraction (XRD) investigation in the overall concentration range. The isothermal section of the phase diagram for the CeO2-La2O3-Eu2O3 system has been constructed. It was established that in the ternary CeO2-La2O3-Eu2O3 system there exist fields of solid solutions based on hexagonal (A) modification of La2O3, cubic modification of CeO2 with fluorite-type structure (F), cubic (C) and monoclinic (B) modification Eu2O3. It was established that in the binary La2O3-Eu2O3 system there exist fields of solid solutions based on hexagonal (A) modification of La2O3 and monoclinic (B) modification Eu2O3. The phases were separated by two-phase fields (A+B). The refined lattice parameters of the unit cells for solid solutions and microstructures of the definite field of compositions for the systems were determined.
               
Click one of the above tabs to view related content.