The Riemann-Liouville and Caputo-Liouville fractional derivatives without singular kernel are proposed as mathematical tools to describe the mathematical models in line viscoelasticity in the present article. The fractional mechanical models… Click to show full abstract
The Riemann-Liouville and Caputo-Liouville fractional derivatives without singular kernel are proposed as mathematical tools to describe the mathematical models in line viscoelasticity in the present article. The fractional mechanical models containing the Maxwell and Kelvin-Voigt elements are graphically discussed with the Laplace transform. The results are accurate and efficient to reveal the complex behaviors of the real materials.
               
Click one of the above tabs to view related content.