In this article, a general fractional-order derivative of the Riemann-Liouville type with the non-singular kernel involving the Rabotnov fractional-exponential function is addressed for the first time. A new general fractional-order… Click to show full abstract
In this article, a general fractional-order derivative of the Riemann-Liouville type with the non-singular kernel involving the Rabotnov fractional-exponential function is addressed for the first time. A new general fractional-order derivative model for the anomalous diffusion is discussed in detail. The general fractional-order derivative operator formula is as a novel and mathematical approach proposed to give the generalized presentation of the physical models in complex phenomena with power law.
               
Click one of the above tabs to view related content.