LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Singlet oxygen generated by a new nonthermal atmospheric pressure air plasma device exerts a bactericidal effect on oral pathogens.

Photo from wikipedia

Oral diseases generally have certain bacteria associated with them. Non-thermal atmospheric pressure plasma (NTAP), generated at atmospheric pressure and room temperature, incorporates several molecules, including reactive oxygen species, that can… Click to show full abstract

Oral diseases generally have certain bacteria associated with them. Non-thermal atmospheric pressure plasma (NTAP), generated at atmospheric pressure and room temperature, incorporates several molecules, including reactive oxygen species, that can inactivate various bacteria including oral pathogens. For this reason, several NTAP devices have been developed to treat oral diseases. Use of noble gases can enhance the bactericidal efficacy of NTAP, but this requires additional gas supply equipment. Therefore, a new NTAP device that employs ambient air as the working gas was developed. The device generates non-thermal atmospheric pressure air plasma. Here, the singlet oxygen (1O2) levels generated, their bactericidal effects on oral pathogens (Streptococcus mutans, Porphyromonas gingivalis, and Enterococcus faecalis), and the bacterial oxidative stress they imposed were measured. 1O2 generation in phosphatebuffered saline was assessed qualitatively using electron spin resonance (ESR) spectroscopy, and bactericidal efficacy was evaluated by counting of colony-forming units/mL. Bacterial oxidative stress was determined by measurement of hydrogen peroxide (H2O2) and superoxide dismutase (SOD) activity. ESR indicated that the level of 1O2 increased significantly and time-dependently, and was inversely correlated with distance, but the bactericidal effects were correlated only with treatment time (not distance) as H2O2 increased and SOD levels decreased, suggesting that the new device has potential applicability for treatment of oral disease.

Keywords: oral pathogens; atmospheric pressure; pressure air; pressure; device

Journal Title: Journal of oral science
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.