LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cellular Origins of Beige Fat Cells Revisited

Photo from archive.org

Activated beige adipocytes have therapeutic potential due to their ability to improve glucose and lipid homeostasis. To date, the origin of beige adipocytes remains enigmatic. Whether beige cells arise through… Click to show full abstract

Activated beige adipocytes have therapeutic potential due to their ability to improve glucose and lipid homeostasis. To date, the origin of beige adipocytes remains enigmatic. Whether beige cells arise through de novo differentiation from resident precursors or through reprogramming of mature white adipocytes has been a topic of intense discussion. Here, we offer our perspective on the natural origin of beige adipocytes in mice. In particular, we revisit recent lineage-tracing studies that shed light on this issue and offer new insight into how environmental housing temperatures early in life influence the mode of beige adipocyte biogenesis upon cold exposure later in life. We suggest a unified model in which beige adipocytes (UCP1+ multilocular cells) in rodents initially arise predominantly from progenitors (i.e., de novo beige adipogenesis) upon the first exposure to cold temperatures and then interconvert between “dormant beige” and “active beige” phenotypes (i.e., beige cell activation) upon subsequent changes in environmental temperature. Importantly, we highlight experimental considerations needed to visualize de novo adipogenesis versus beige cell activation in mice. A precise understanding of the cellular origins of beige adipocytes emanating in response to physiological and pharmacological stimuli may better inform therapeutic strategies to recruit beige adipocytes in vivo.

Keywords: beige adipocytes; beige fat; fat cells; beige; cellular origins; origins beige

Journal Title: Diabetes
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.