LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

m6A mRNA Methylation Controls Functional Maturation in Neonatal Murine β-Cells

Photo by priscilladupreez from unsplash

The N6-methyladenosine (m6A) RNA modification is essential during embryonic development of various organs. However, its role in embryonic and early postnatal islet development remains unknown. Mice in which RNA methyltransferase-like… Click to show full abstract

The N6-methyladenosine (m6A) RNA modification is essential during embryonic development of various organs. However, its role in embryonic and early postnatal islet development remains unknown. Mice in which RNA methyltransferase-like 3/14 (Mettl3/14) were deleted in Ngn3+ endocrine progenitors (Mettl3/14nKO) developed hyperglycemia and hypoinsulinemia at 2 weeks after birth. We found that Mettl3/14 specifically regulated both functional maturation and mass expansion of neonatal β-cells before weaning. Transcriptome and m6A methylome analyses provided m6A-dependent mechanisms in regulating cell identity, insulin secretion, and proliferation in neonatal β-cells. Importantly, we found that Mettl3/14 were dispensable for β-cell differentiation but directly regulated essential transcription factor MafA expression at least partially via modulating its mRNA stability. Failure to maintain this modification impacted the ability to fulfill β-cell functional maturity. In both diabetic db/db mice and patients with type 2 diabetes (T2D), decreased Mettl3/14 expression in β-cells was observed, suggesting its possible role in T2D. Our study unraveled the essential role of Mettl3/14 in neonatal β-cell development and functional maturation, both of which determined functional β-cell mass and glycemic control in adulthood.

Keywords: methylation controls; m6a mrna; mrna methylation; maturation; cell; functional maturation

Journal Title: Diabetes
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.