LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Central KATP Channels Modulate Glucose Effectiveness in Humans and Rodents

Photo by usgs from unsplash

Hyperglycemia is a potent regulator of endogenous glucose production (EGP). Loss of this “glucose effectiveness” is a major contributor to elevated plasma glucose concentrations in type 2 diabetes (T2D). KATP… Click to show full abstract

Hyperglycemia is a potent regulator of endogenous glucose production (EGP). Loss of this “glucose effectiveness” is a major contributor to elevated plasma glucose concentrations in type 2 diabetes (T2D). KATP channels in the central nervous system have been shown to regulate EGP in humans and rodents. We examined the contribution of central KATP channels to glucose effectiveness. Under fixed hormonal conditions (studies using a pancreatic clamp), hyperglycemia suppressed EGP by ∼50% in both humans without diabetes and normal Sprague-Dawley rats. By contrast, antagonism of KATP channels with glyburide significantly reduced the EGP-lowering effect of hyperglycemia in both humans and rats. Furthermore, the effects of glyburide on EGP and gluconeogenic enzymes were abolished in rats by intracerebroventricular administration of the KATP channel agonist diazoxide. These findings indicate that about half of the suppression of EGP by hyperglycemia is mediated by central KATP channels. These central mechanisms may offer a novel therapeutic target for improving glycemic control in subjects with T2D.

Keywords: glucose effectiveness; katp channels; katp; hyperglycemia; central katp; humans rodents

Journal Title: Diabetes
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.