LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mitochondrial Efflux of Citrate and Isocitrate Is Fully Dispensable for Glucose-Stimulated Insulin Secretion and Pancreatic Islet β-Cell Function

Photo from wikipedia

The defining feature of pancreatic islet β-cell function is the precise coordination of changes in blood glucose levels with insulin secretion to regulate systemic glucose homeostasis. While ATP has long… Click to show full abstract

The defining feature of pancreatic islet β-cell function is the precise coordination of changes in blood glucose levels with insulin secretion to regulate systemic glucose homeostasis. While ATP has long been heralded as a critical metabolic coupling factor to trigger insulin release, glucose-derived metabolites have been suggested to further amplify fuel-stimulated insulin secretion. The mitochondrial export of citrate and isocitrate through the citrate-isocitrate carrier (CIC) has been suggested to initiate a key pathway that amplifies glucose-stimulated insulin secretion, though the physiological significance of β-cell CIC-to-glucose homeostasis has not been established. Here, we generated constitutive and adult CIC β-cell knockout (KO) mice and demonstrate that these animals have normal glucose tolerance, similar responses to diet-induced obesity, and identical insulin secretion responses to various fuel secretagogues. Glucose-stimulated NADPH production was impaired in β-cell CIC KO islets, whereas glutathione reduction was retained. Furthermore, suppression of the downstream enzyme cytosolic isocitrate dehydrogenase (Idh1) inhibited insulin secretion in wild-type islets but failed to impact β-cell function in β-cell CIC KO islets. Our data demonstrate that the mitochondrial CIC is not required for glucose-stimulated insulin secretion and that additional complexities exist for the role of Idh1 and NADPH in the regulation of β-cell function.

Keywords: insulin secretion; stimulated insulin; cell function; glucose stimulated; cell

Journal Title: Diabetes
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.