LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Methazolamide Attenuates the Development of Diabetic Cardiomyopathy by Promoting β-Catenin Degradation in Type 1 Diabetic Mice.

Photo by diabetesmagazijn from unsplash

Methazolamide (MTZ), a carbonic anhydrase inhibitor, has been shown to inhibit cardiomyocyte hypertrophy and exert a hypoglycemic effect in patients with type 2 diabetes mellitus and diabetic db/db mice. However,… Click to show full abstract

Methazolamide (MTZ), a carbonic anhydrase inhibitor, has been shown to inhibit cardiomyocyte hypertrophy and exert a hypoglycemic effect in patients with type 2 diabetes mellitus and diabetic db/db mice. However, whether MTZ has a cardioprotective effect in the setting of diabetic cardiomyopathy is not clear. We investigated the effects of MTZ in a mouse model of streptozotocin-induced type 1 diabetes mellitus (T1DM). Diabetic mice received MTZ by intragastric gavage (10, 25, or 50 mg/kg; daily for 16 weeks). In the diabetic group, MTZ significantly reduced both random and fasting blood glucose levels and improved glucose tolerance in a dose-dependent manner. MTZ ameliorated T1DM-induced changes in cardiac morphology and dysfunction. Mechanistic analysis revealed that MTZ blunted T1DM-induced enhanced expression of β-catenin. Similar results were observed in neonatal rat cardiomyocytes (NRCMs) and adult mouse cardiomyocytes treated with high glucose or Wnt3a (a β-catenin activator). There was no significant change in β-catenin mRNA levels in cardiac tissues or NRCMs. MTZ-mediated β-catenin downregulation was recovered by MG132, a proteasome inhibitor. Immunoprecipitation and immunofluorescence analyses showed augmentation of AXIN1-β-catenin interaction by MTZ in T1DM hearts and in NRCMs treated with Wnt3a; thus, MTZ may potentiate AXIN1-β-catenin linkage to increase β-catenin degradation. Overall, MTZ may alleviate cardiac hypertrophy by mediating AXIN1-β-catenin interaction to promote degradation and inhibition of β-catenin activity. These findings may help inform novel therapeutic strategy to prevent heart failure in patients with diabetes mellitus.

Keywords: diabetic mice; mtz; degradation; catenin; diabetic cardiomyopathy

Journal Title: Diabetes
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.