LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Impact of Type 1 Diabetes in the Developing Brain in Children: A Longitudinal Study

Photo from wikipedia

OBJECTIVE To assess whether previously observed brain and cognitive differences between children with type 1 diabetes and control subjects without diabetes persist, worsen, or improve as children grow into puberty… Click to show full abstract

OBJECTIVE To assess whether previously observed brain and cognitive differences between children with type 1 diabetes and control subjects without diabetes persist, worsen, or improve as children grow into puberty and whether differences are associated with hyperglycemia. RESEARCH DESIGN AND METHODS One hundred forty-four children with type 1 diabetes and 72 age-matched control subjects without diabetes (mean ± SD age at baseline 7.0 ± 1.7 years, 46% female) had unsedated MRI and cognitive testing up to four times over 6.4 ± 0.4 (range 5.3–7.8) years; HbA1c and continuous glucose monitoring were done quarterly. FreeSurfer-derived brain volumes and cognitive metrics assessed longitudinally were compared between groups using mixed-effects models at 6, 8, 10, and 12 years. Correlations with glycemia were performed. RESULTS Total brain, gray, and white matter volumes and full-scale and verbal intelligence quotients (IQs) were lower in the diabetes group at 6, 8, 10, and 12 years, with estimated group differences in full-scale IQ of −4.15, −3.81, −3.46, and −3.11, respectively (P < 0.05), and total brain volume differences of −15,410, −21,159, −25,548, and −28,577 mm3 at 6, 8, 10, and 12 years, respectively (P < 0.05). Differences at baseline persisted or increased over time, and brain volumes and cognitive scores negatively correlated with a life-long HbA1c index and higher sensor glucose in diabetes. CONCLUSIONS Detectable changes in brain volumes and cognitive scores persist over time in children with early-onset type 1 diabetes followed longitudinally; these differences are associated with metrics of hyperglycemia. Whether these changes can be reversed with scrupulous diabetes control requires further study. These longitudinal data support the hypothesis that the brain is a target of diabetes complications in young children.

Keywords: impact type; type diabetes; volumes cognitive; brain; brain volumes

Journal Title: Diabetes Care
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.