LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mechanical Behavior of Ceramic Monolithic Systems With Different Thicknesses.

Photo by tomcrewceramics from unsplash

OBJECTIVES This study assessed the fully stabilized zirconia (FSZ) Prettau Anterior, the partially stabilized zirconia (PSZ) Prettau, and the lithium disilicate IPS e.max CAD (LD) through microstructural and mechanical characterization… Click to show full abstract

OBJECTIVES This study assessed the fully stabilized zirconia (FSZ) Prettau Anterior, the partially stabilized zirconia (PSZ) Prettau, and the lithium disilicate IPS e.max CAD (LD) through microstructural and mechanical characterization and effect of thickness on fracture load of the ceramics. METHODS AND MATERIALS Disk-shaped specimens (12 mm diameter and 1.2 mm thickness) were prepared for biaxial flexural strength (BFS) and Weibull statistics (n=30). For the fracture load static test (FLST) and Weibull statistics (n=30), disk-shaped specimens 12 mm in diameter and thicknesses of 0.5 mm, 1 mm, and 1.5 mm were cemented on an epoxy-resin substrate. RESULTS BFS (MPa) results were PSZ: 683.0 ± 70.23; FSZ: 438.6 ± 64.1; and LD: 248.6 ± 37.3. One-way analysis of variance (ANOVA) for BFS was significant (p<0.001), and the Tukey post hoc test showed differences among all ceramics. There was difference in characteristic strength, but there was no difference in Weibull modulus. Two-way ANOVA for FLST was significant for ceramic (p<0001), thickness (p<0001), and interaction (p<0001). There was no difference among all ceramics at the 0.5 mm thickness. PSZ had higher values for the 1.0 mm and 1.5 mm thicknesses. LD of 1.5 mm thickness exhibited a higher FLST than FSZ. CONCLUSIONS PSZ had the highest BFS, but when cemented on a substrate, all ceramics with 0.5 mm thickness behaved similarly. Despite the lower BFS, LD had a fracture load similar or superior to FSZ when cemented on a substrate.

Keywords: behavior ceramic; mechanical behavior; bfs; fracture load; monolithic systems; ceramic monolithic

Journal Title: Operative dentistry
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.