The objective of this study was to synthesize and characterize epigallocatechin-3-gallate (EGCG)-loaded/poly(D-L lactide-co-glycolide) acid (PLGA) microparticles, evaluate their effects on degree of conversion and release assay of adhesives, and subsequently… Click to show full abstract
The objective of this study was to synthesize and characterize epigallocatechin-3-gallate (EGCG)-loaded/poly(D-L lactide-co-glycolide) acid (PLGA) microparticles, evaluate their effects on degree of conversion and release assay of adhesives, and subsequently to examine the resin-dentin bond strength of two EGCG formulations (free EGCG or loaded into PLGA microparticles) applied as a pretreatment or incorporated into an adhesive system. The formulations were prepared according to a PLGA:EGCG ratio of 16:1 using the spray-drying technique. The size and polydispersity index were determined by light scattering in aqueous dispersion. The degree of conversion (%DC) and release assay were assessed by Fourier transform infrared spectroscopy and ultraviolet-visible spectrophotometer, respectively. Subsequently, 45 third molars were divided into five groups (n=9) according to the different EGCG application modes and prepared for bond strength testing in a universal testing machine. Results demonstrated no statistically significant difference among the DC means after the PLGA microparticles were loaded with EGCG. For the release assay, the 1.0% PLGA/EGCG group presented better results after being elected for use in the bond strength test. The resin-dentin bond strengths of the experimental groups after 12 months of water storage were significantly higher than in the control group. EGCG could improve the durability of the resin-dentin bond over time and promote a new era for adhesive dentistry with the concept of controlled release.
               
Click one of the above tabs to view related content.