The aluminum alloy with low density, high specific strength and excellent fracture toughness could meet the demand of lightweight large-scale manufacturing, and it has been extensively used in the field… Click to show full abstract
The aluminum alloy with low density, high specific strength and excellent fracture toughness could meet the demand of lightweight large-scale manufacturing, and it has been extensively used in the field of aerospace, rail transit, and automotive. Laser-arc additive manufacturing has the advantage of stable forming process and fewer defects due to the addition of a laser, so it has the great potential advantage in additive manufacturing of aluminum alloy. In this paper, the aluminum alloy thin-wall was prepared by arc and laser-arc hybrid additive manufacturing, and the microstructure, the phase structure, microhardness, and tensile property were analyzed. The results show that the microstructure exhibited the periodic distribution characteristics in both additive manufacturing processes, and in the bottom, the middle, and the top area, it presents the coarse columnar, fine columnar, and fine equiaxed dendritic, respectively. In hybrid additive manufacturing, a laser affected zone with refinement grains ap...
               
Click one of the above tabs to view related content.