An extensive experimental investigation was performed to explore the shock waves formation and development process in transonic flow. Shadowgraph visualization technique was employed to provide visual description of the flowfield… Click to show full abstract
An extensive experimental investigation was performed to explore the shock waves formation and development process in transonic flow. Shadowgraph visualization technique was employed to provide visual description of the flowfield features. Based on the visualization, the formation process was categorized into two intrinsically different phases, subsonic and supersonic. The characteristics of subsonic phase are well known; however, those of the supersonic ones are far less studied. The supersonic phase itself is made up of two consecutive phases, namely approaching and sweeping. The effects of each phase on the flowfield characteristics and on shaping the supersonic regime have been studied in details. In order to generalize the results, three different models were tested. Moreover, a special terminology is suggested by authors to ease the process description and to pave a way for future studies. Above all, as the transition from transonic regime to supersonic one is a vague concept in terms of physical reasoning, a new explanation was proposed that could be used as a criterion for distinguishing between transonic and supersonic regimes.
               
Click one of the above tabs to view related content.