LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Microstructure and fatigue fracture mechanism for a heavy-duty truck diesel engine crankshaft

Photo from wikipedia

The main goal of this research is the experimental and numerical study on the fatigue function and failure of the crankshaft of diesel engine of a heavy truck. To do… Click to show full abstract

The main goal of this research is the experimental and numerical study on the fatigue function and failure of the crankshaft of diesel engine of a heavy truck. To do this, a crankshaft of the diesel engine of a heavy truck that has gone under failure after traveling 955000 km, has been used. To examine the sources of this failure, several experimental studies have been carried out including chemical composition, the strength of the material, determining the hardness and the microstructure of the material. Besides, using an elastic–plastic three dimensional finite element method (FEM) model, the location of the maximum stress in the crankshaft was determined using the ‘‘complete crankshaft model’’ and ‘‘one crank model’’. Using the results of stress analysis, was a basis for the three-dimensional crack growth model and fatigue life estimation to determine the stress intensity factor and fatigue life considering the related parameters and boundary conditions method. At the final stage, using the results gotten from the given model for the fatigue crack growth, comparing it with experimental results, and examining the whole process, it was concluded that the scratches in crankpin region, was the main reason for the fatigue failure got from bending-torsional load-combination.

Keywords: crankshaft; truck; diesel engine; model; microstructure

Journal Title: Scientia Iranica
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.