LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Numerical simulation of thermal radiative heat transfer effects on Fe3O4-ethylene glycol nanofluid EHD flow in a porous enclosure

Photo by pawel_czerwinski from unsplash

Electrohydrodynamic Fe3O4- Ethylene glycol nanofluid forced convection is simulated in existence of thermal radiation. The porous lid driven cavity has one moving positive electrode. Single phase model has been applied… Click to show full abstract

Electrohydrodynamic Fe3O4- Ethylene glycol nanofluid forced convection is simulated in existence of thermal radiation. The porous lid driven cavity has one moving positive electrode. Single phase model has been applied to simulate nanofluid behavior. Control Volume based Finite Element Method is employed to obtain the results which are the roles of Darcy number , radiation parameter , Reynolds number , nanofluid volume fraction and supplied voltage . Results depict that maximum values for temperature gradient is obtained for platelet shape nanoparticles. Nusselt number enhances with rise of Darcy number and supplied voltage. Convection mode enhances with increase of permeability of porous media and nanofluid volume fraction but it decreases with rise of Hartmann number.

Keywords: numerical simulation; glycol nanofluid; fe3o4 ethylene; number; ethylene glycol

Journal Title: Scientia Iranica
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.