In this study, two simulation models have been developed to predict the main stock price index of Borsa Istanbul with an artificial intelligence approach. To analyze the role of technical… Click to show full abstract
In this study, two simulation models have been developed to predict the main stock price index of Borsa Istanbul with an artificial intelligence approach. To analyze the role of technical indicators in intraday predicting of stock markets, two different artificial neural network models have been developed in which different parameters are defined in the input layers. In the first model, 5 input parameters have been defined as open price, highest price, lowest price, and two different moving averages, 3 more parameters added as The Relative Strength Index, The Moving Average Convergence Divergence and the moving average of this. The Borsa Istanbul value has been predicted. 70% of the data used in multi-layer network models developed with a total of 97 data sets have been used for training the model, 20% for validation and 10% for testing. The results show that both neural network models can predict Borsa Istanbul values with very low error rates. However, it is seen that the prediction performance of the first model, which has been developed by defining fewer input data, is higher than the second model. In addition, the results obtained support that the predictions made with intraday data are stronger between 13:00 and 16:30.
               
Click one of the above tabs to view related content.