LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Evaluation of the Effect of Cr, Mo, V and W on the Selected Properties of Silumins

Photo from wikipedia

The results of statistical analysis applied in order to evaluate the effect of the high melting point elements to pressure die cast silumin on its tensile strength Rm, unit elongation… Click to show full abstract

The results of statistical analysis applied in order to evaluate the effect of the high melting point elements to pressure die cast silumin on its tensile strength Rm, unit elongation A and HB were discussed. The base alloy was silumin with the chemical composition similar to ENAC 46000. To this silumin, high melting point elements such as Cr, Mo, V and W were added. All possible combinations of the additives were used. The content of individual high melting point additives ranged from 0.05 to 0.50%. The tests were carried out on silumin with and without above mentioned elements. The values of Rm, A and HB were determined for all the examined chemical compositions of the silumin. The conducted statistical analysis showed that each of the examined high melting point additives added to the silumin in an appropriate amount could raise the values of Rm, A and HB. To obtain the high tensile strength of Rm = 291 MPa in the tested silumin, the best content of each of the additives should be in the range of 0.05-0.10%. To obtain the highest possible elongation A of about 6.0%, the best content of the additives should be as follows: chromium in the range of 0.05-0.15%, molybdenum 0.05% or 0.15%, vanadium 0.05% and tungsten 0.15%. To obtain the silumin with hardness of 117 HB, chromium, molybdenum and vanadium content should be equal to about 0.05%, and tungsten to about 0.5%.

Keywords: high melting; evaluation effect; silumin; melting point

Journal Title: Archives of Foundry Engineering
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.