LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

New Theoretical Model for Mass Sensitivity of Love Wave Sensors

Photo from wikipedia

In this work we analyse basic characteristics of Love wave sensors implemented in waveguide structures composed of a lossy viscoelastic surface layer deposited on a lossless elastic substrate. It has… Click to show full abstract

In this work we analyse basic characteristics of Love wave sensors implemented in waveguide structures composed of a lossy viscoelastic surface layer deposited on a lossless elastic substrate. It has to be noted that Love wave sensors working at ultrasonic frequencies have the highest mass density sensitivity $S_σ^(v_p )$ among all known ultrasonic sensors, such as QCM, Lamb wave or Rayleigh wave sensors. In this paper we have established an exact analytical formula for the mass density sensitivity $S_σ^(v_p )$ of the Love wave sensors in the form of an explicit algebraic expression. Subsequently, using this developed analytical formula, we compared theoretically the mass density sensitivity $S_σ^(v_p )$ for various Love wave waveguide structures, such as: (1) lossy PMMA surface layer on lossless Quartz substrate and (2) lossy PMMA on lossless Diamond substrate. The performed analysis shows that the mass density sensitivity $S_σ^(v_p )$ (real and imaginary part) for a sensor with a structure PMMA on Diamond is five times higher than that of a PMMA on Quartz structure. It was found that the mass density sensitivity $S_σ^(v_p )$ for Love wave sensors increases with the increase of the ratio: bulk shear wave velocity in the substrate to bulk shear wave velocity in the surface layer.

Keywords: love wave; sensitivity; mass density; wave sensors

Journal Title: Archives of Acoustics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.