LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Highly anisotropic interlayer magnetoresitance in ZrSiS nodal-line Dirac semimetal

Photo from wikipedia

In this work, we investigate the angle-dependent magnetoresistance (AMR) of the layered nodal-line Dirac semimetal ZrSiS for the in-plane and out-of-plane current directions. Combining the Fermi surfaces calculated from first… Click to show full abstract

In this work, we investigate the angle-dependent magnetoresistance (AMR) of the layered nodal-line Dirac semimetal ZrSiS for the in-plane and out-of-plane current directions. Combining the Fermi surfaces calculated from first principles with the Boltzmann’s semiclassical transport theory, we reproduce all the prominent features of the unusual behavior of the in-plane and out-of-plane AMR.We can conclude that the dominant contribution the cusplike AMR lies in open orbits of the hole pocket and, in general, AMR is strongly influenced by charge compensation effect and the off-diagonal conductivity tensor elements, which give rise to peculiar butterfly-shaped AMR.

Keywords: line dirac; zrsis; dirac semimetal; nodal line

Journal Title: Physical Review B
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.