In this work, we investigate the angle-dependent magnetoresistance (AMR) of the layered nodal-line Dirac semimetal ZrSiS for the in-plane and out-of-plane current directions. Combining the Fermi surfaces calculated from first… Click to show full abstract
In this work, we investigate the angle-dependent magnetoresistance (AMR) of the layered nodal-line Dirac semimetal ZrSiS for the in-plane and out-of-plane current directions. Combining the Fermi surfaces calculated from first principles with the Boltzmann’s semiclassical transport theory, we reproduce all the prominent features of the unusual behavior of the in-plane and out-of-plane AMR.We can conclude that the dominant contribution the cusplike AMR lies in open orbits of the hole pocket and, in general, AMR is strongly influenced by charge compensation effect and the off-diagonal conductivity tensor elements, which give rise to peculiar butterfly-shaped AMR.
               
Click one of the above tabs to view related content.