Abstract In this study, the protective functions of bacteria-free conditioned media from Bifidobacterium and Lactobacillus species against ultraviolet radiation-induced skin ageing and associated cellular damage were investigated. The effects of… Click to show full abstract
Abstract In this study, the protective functions of bacteria-free conditioned media from Bifidobacterium and Lactobacillus species against ultraviolet radiation-induced skin ageing and associated cellular damage were investigated. The effects of ultraviolet radiation-induced reactive oxygen species production were suppressed by all conditioned media; particularly, the loss of cell viability and downregulation of collagen gene expression were significantly reversed by the conditioned media from B. longum and B. lactis. Further exa mination of potential anti-pigmentation effects revealed that the B. lactis-derived conditioned media significantly inhibited tyrosinase activity and alpha-melanocyte-stimulating hormone-induced melanin production in human epidermal melanocytes. Further, the conditioned media suppressed the phosphorylation of extracellular signal- related kinase, which functions as an upstream regulator of melanogenesis. Therefore, B. lactis-derived conditioned media can potentially protect against cellular damage involved in skin-ageing processes.
               
Click one of the above tabs to view related content.