LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Prognosticating the Shade Change after Softener Application using Artificial Neural Networks

Photo from wikipedia

Abstract Softener application on fabric surface facilitates the process and wear abilities of the fabric. However, the application of softeners and other functional finishes influence the color of dyed fabrics,… Click to show full abstract

Abstract Softener application on fabric surface facilitates the process and wear abilities of the fabric. However, the application of softeners and other functional finishes influence the color of dyed fabrics, which results in shade change in the final finished fabrics. This article presents the method of intelligent prediction of the shade change of dyed knitted fabrics after finishing application by using artificial neural networks (ANNs). Individual neural networks are trained for the prediction of delta values (ΔL, Δa, Δb, Δc, and Δh) of finished samples with the help of reflectance values of the knitted dyed samples along with color, shade percentage, and finishing concentrations, which were selected as input parameters. The trained ANNs were validated through “holdout” and “cross-validation” techniques. The trained ANNs were combined to develop the model for shade prediction. The developed system can predict the shade change with >90% accuracy and help to decrease the rework and reprocessing in the wet processing industries.

Keywords: neural networks; shade change; application using; application; softener application

Journal Title: Autex Research Journal
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.