Abstract Objectives. The application of nanoparticles is experiencing a rapid growth, but it faces a problem of their toxicity, especially adverse effects on female reproduction. Food and medicinal plants and… Click to show full abstract
Abstract Objectives. The application of nanoparticles is experiencing a rapid growth, but it faces a problem of their toxicity, especially adverse effects on female reproduction. Food and medicinal plants and their isoflavones can be protectors against environmental stressors, but their ability to abate the adverse effects of nanoparticles has not been studied yet. In the present study, we examined the effect of silver (AgNPs) and titanium dioxide (titania, TiO2NPs) nanoparticles alone or in combination with plant phytoestrogens/antioxidants (resveratrol, diosgenin, and quercetin) on accumulation of nanoparticles, and progesterone release by cultured porcine ovarian granulosa cells. Methods. Porcine granulosa cells were incubated in the presence of AgNPs or TiO2NPs (0.1, 1, 10 or 100 µg/ml) alone or in combination with resveratrol, diosgenin or quercetin (10 µg/ml) for 48 h. The accumulation of tested nanoparticles by granulosa cells was assessed under light microscope. Progesterone concentration in culture media was measured by ELISA kit. Results. Cells accumulated both AgNPs and TiO2NPs in a dose-dependent manner. AgNPs, but not TiO2NPs, at highest dose (100 µg/ml) resulted in a destruction of cell monolayer. Both Ag-NPs and TiO2NPs reduced progesterone release. Resveratrol, diosgenin, and quercetin promoted accumulation of both AgNPs and TiO2NPs in ovarian cells and inhibited the progesterone output. Furthermore, resveratrol and diosgenin, but not quercetin, prevented the suppressive action of both AgNPs, and TiO2NPs on progesterone release. Conclusions. These observations (1) demonstrate accumulation of AgNPs and TiO2NPs in ovarian cells, (2) confirm the toxic impact of AgNPs, and TiO2NPs on these cells, (3) confirm the inhibitory effects of plant polyphenols/phytoestrogens on ovarian steroidogenesis, (4) show the ability of these isoflavones to increase the accumulation of AgNPs and TiO2NPs, and (5) show their ability to reduce the suppressive effect of AgNPs and TiO2NPs on ovarian progesterone release. The suppressive effect of AgNPs and TiO2NPs on ovarian functions should be taken into account by their exposition. However, these adverse effects could be mitigated by some plant isoflavones.
               
Click one of the above tabs to view related content.