Abstract A numerical model is developed to study the Soret and Dufour effects on MHD boundary layer flow of a power-law fluid over a flat plate with velocity, thermal and… Click to show full abstract
Abstract A numerical model is developed to study the Soret and Dufour effects on MHD boundary layer flow of a power-law fluid over a flat plate with velocity, thermal and solutal slip boundary conditions. The governing equations for momentum, energy and mass are transformed to a set of non-linear coupled ordinary differential equations by using similarity transformations. These non-linear ordinary differential equations are first linearized using a quasi-linearization technique and then solved numerically based on the implicit finite difference scheme over the entire range of physical parameters with appropriate boundary conditions. The influence of various governing parameters along with velocity, thermal and mass slip parameters on velocity, temperature and concentration fields are examined graphically. Also, the effects of slip parameters, the Soret and Dufour number on the skin friction, Nusselt number and Sherwood number are studied. Results show that the increase in the Soret number leads to a decrease in the temperature distribution and to an increase in concentration fields.
               
Click one of the above tabs to view related content.