LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Studies on Velocity Fields Around the Cavitation Vortices Generated by the Model of a Rotating Blade

Photo from wikipedia

Abstract The elimination of hazards caused by cavitation phenomena is an important issue to be considered in the design of process equipment including flow machinery. These hazards are: cavitation erosion,… Click to show full abstract

Abstract The elimination of hazards caused by cavitation phenomena is an important issue to be considered in the design of process equipment including flow machinery. These hazards are: cavitation erosion, efficiency decrease as well as vibration and noise. One of the most intensive and dangerous forms of cavitation is vortex cavitation that accompanies the operation of hydraulic machines in which components comprised of rotating blades are applied. Velocity fields around cavitation vortices generated by the model of a propeller blade were experimentally studied in a cavitation tunnel. Flow images were recorded using a high-speed camera and processed using particle image velocimetry (PIV) complemented with computer-aided techniques that had been developed for the purpose of this research. These techniques included the removal of image distortions on the basis of a calibration mask, determination of instantaneous velocity distributions and removal of air-bubble traces from flow images. Experimental studies result examples were presented in the form of velocity fields determined in the longitudinal plane as well as in three transverse planes remote from the blade. Instabilities of the cavitating vortex stream and of the local liquid-flow velocity in its surrounding were detected. The effect of the angle of attack of propeller blade on the instability of the vortex stream and the effect of the presence of the cavitating vortex kernel on the local velocities of the surrounding liquid, were determined.

Keywords: cavitation; fields around; velocity; around cavitation; cavitation vortices; velocity fields

Journal Title: Polish Maritime Research
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.