LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Characterization of Cinnamyl Alcohol Dehydrogenase gene family in lignifying tissues of Tectona grandis L.f.

Photo by gcalebjones from unsplash

Abstract The cinnamyl alcohol dehydrogenase (CAD) enzyme catalyzes the last step of monolignols synthesis in the lignin pathway. Tectona grandis (teak) is a tropical tree with high valuable timber. As… Click to show full abstract

Abstract The cinnamyl alcohol dehydrogenase (CAD) enzyme catalyzes the last step of monolignols synthesis in the lignin pathway. Tectona grandis (teak) is a tropical tree with high valuable timber. As there is few genetic information about lignin formation in teak, the purpose of this study is to characterize members of CAD family in this species. As methodology, PCR amplification using cDNA samples, vector cloning, sequencing, bioinformatics analyses and gene expression studies using real time RT-qPCR were performed. As results, four members (TgCAD1- TgCAD4) were obtained. Comparative analyses showed that all of them have conserved residues for catalytic zinc action, structural zinc ligation, NADPH binding and substrate specificity, consistent with the mechanism of alcohol dehydrogenases. Phylogenetic analysis showed that TgCADs are present in three main classes and seven groups. Expression analyses revealed that TgCAD1 was highly expressed in leaves and could be related with pathogen defense. TgCAD2 was more expressed in branches and roots. Differently, TgCAD3 and TgCAD4 were highly expressed in juvenile and mature sapwood, suggesting a crucial role in wood development and lignin biosynthesis, with tissue-specialized expression profiles. Furthermore, TgCAD4 could be related with teak maturation for being more expressed in sapwood of mature teak trees. As conclusion, this work is the first to characterize genes of CAD family in Tectona grandis. These genes could be interesting to develop transgenic plants for basic research and field applications.

Keywords: tectona grandis; family; cinnamyl alcohol; alcohol dehydrogenase; alcohol

Journal Title: Silvae Genetica
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.