Abstract Due to ongoing climate change, forests are exposed to changing environmental conditions, such as increasing temperatures and lower precipitation, to which trees have to adapt. Successful adaptation to changing… Click to show full abstract
Abstract Due to ongoing climate change, forests are exposed to changing environmental conditions, such as increasing temperatures and lower precipitation, to which trees have to adapt. Successful adaptation to changing and variable environments requires sufficient genetic variation within tree populations. Knowledge of the genetic variation of trees is therefore essential, as it provides information for the long-term conservation, stability and productivity of forests. The genetic variation of a species can be analysed with molecular markers. Despite growing genomic and genetic resources for European beech (Fagus sylvatica L.), which is one of the economically and ecologically most important forest tree species in Central Europe, the number of molecular markers for population genetic analyses is still limited. Therefore, the aim of the work is the development of new EST-SSR markers for this species. A total of 72 DNA samples of European beech from three widely separated regions in Germany were used to test 41 primers for variation and polymorphism, 35 of which were originally developed for American beech (Fagus grandifolia Ehrh.) and 6 for red oak (Quercus rubra L.). Fifteen of the primers were polymorphic, 13 monomorphic and 13 did not amplify. In addition, the transferability of the markers was successfully tested in the related species Castanea dentata Bork., Fagus orientalis Lipsky and Q. rubra. The EST-SSR markers tested in this study will be useful for future population genetic analyses and extend the set of available markers in European beech.
               
Click one of the above tabs to view related content.