LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Molecular detection of Metallo-Beta-Lactamase and alginate in multidrug resistance Pseudomonas aeruginosa isolated from the clinical specimen

Photo from wikipedia

Pseudomonas aeruginosa pathogen is opportunistic. Several virulence factors and biofilms can cause its pathogenicity. Furthermore, infections triggered via multidrug-resistant P. aeruginosa among hospitalized patients are a public health concern. The… Click to show full abstract

Pseudomonas aeruginosa pathogen is opportunistic. Several virulence factors and biofilms can cause its pathogenicity. Furthermore, infections triggered via multidrug-resistant P. aeruginosa among hospitalized patients are a public health concern. The primary antimicrobial agents in treating Gram-negative infection include Meropenem and Imipenem. Moreover, the spread of Carbapenem-resistant P. aeruginosa is a focal concern worldwide. The present research aims to determine the spread of Carbapenem-resistant P. aeruginosa, and the distribution of the Alginate and Metallo-beta-lactamase encoding gene in clinical isolates. In the present cross-sectional descriptive research, 50 wound and sputum clinical specimens were obtained. Isolates were all identified by applying cultural characteristics and biochemical tests. The Polymerase Chain Reaction (PCR) was conducted to distinguish algD, BLA-VIM, BLA-IMP, and 16SrRNA genes. Moreover, the phenotypic method was used to detect hemolysin. The disk diffusion technique was applied to screen clinical isolates for eight antimicrobial agents. The PCR results showed all isolates to be positive for algD and negative for BLA-VIM and BLA-IMP genes. Hemolysin and multidrug resistance prevalence was 100% and 76%, respectively. Furthermore, Meropenem proved to be the most efficient antibiotic against clinical isolates. Alginate and hemolysin are considered significant virulence factors for P. aeruginosa, playing a key role in triggering diseases and tissue or skin lesions. The emergence of Multidrug Resistant (MDR) isolates indicates that developing antibiotic stewardship in our regional community hospital is a top priority. Infection control measures could help control the distribution of virulence genes in P. aeruginosa isolates. Moreover, regular observation is needed to decrease public health threats, distributing virulence factors and Imipenem-resistance patterns in clinical isolates of P. aeruginosa.

Keywords: clinical isolates; pseudomonas aeruginosa; multidrug resistance; beta lactamase; metallo beta; resistance

Journal Title: Journal of Medicine and Life
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.