LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Novel Approach to Improve Stability and Convergence of Flowfield Solution Processes: Mode Multigrid

In the field of computational fluid dynamics, stability and convergence problems are often encountered when solving the governing equation. This paper studies the effect of the mode multigrid on the… Click to show full abstract

In the field of computational fluid dynamics, stability and convergence problems are often encountered when solving the governing equation. This paper studies the effect of the mode multigrid on the stability and convergence of iterative algorithms. By further analyzing the mechanism for accelerating the convergence of mode multigrid, a new adaptive mode multigrid (AMMG) is proposed, and an adaptive selection criterion is formulated for the parameters of dynamic modal decomposition, which can accurately identify and filter out the unstable modes in the flowfield, thus efficiently obtaining the accurate steady solution. In the cases of laminar flow past circular cylinder and turbulent flow past airfoil, the AMMG significantly improves the stability of the iterative algorithm; in the case of transonic flow past airfoil, the AMMG solves the problem of shock wave shaking during the iteration, and the convergence is significantly improved. In summary, the AMMG method significantly enhances the stability and convergence of the iterative algorithm, and can be used as an effective convergence-preserving computation strategy.

Keywords: stability convergence; mode multigrid; convergence; solution; flow past; stability

Journal Title: AIAA Journal
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.