LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Study Membrane Solarelasticity Using a Wave Model and a Corpuscular Model of Light

Photo from wikipedia

The difference between solarelastic interaction and aeroelastic interaction is illustrated from the perspective of external forces. Membrane solarelastic responses of the solar cell and solar sail are studied through a… Click to show full abstract

The difference between solarelastic interaction and aeroelastic interaction is illustrated from the perspective of external forces. Membrane solarelastic responses of the solar cell and solar sail are studied through a wave model and a corpuscular model of light, respectively, where the light intensity and phase are considered in the wave model to calculate the solar radiation pressure but the phase of light is neglected in the corpuscular model. The effects of the membrane optical properties, the thickness, and the size on the solarelastic flutter instability are investigated. The solar radiation pressure is divided into a part depending on the sail deformation and a part independent of sail deformation to investigate their respective influences. The results show that the former terms result in membrane flutter and the latter term results in membrane static deflection. A comparison is conducted between the wave model and the corpuscular model on the flutter boundaries and membrane responses. The membrane reflectivity is coupled with membrane stiffness by the membrane thickness in the wave model, but it is uncoupled in the corpuscular model. Therefore, the wave model has an advantage over the corpuscular model when evaluating the thickness effect of membrane reflectivity.

Keywords: model light; wave model; corpuscular model; model; membrane; model corpuscular

Journal Title: AIAA Journal
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.