Uncertainty quantification and variability analysis are two domains of interest when looking at the efficiency of HPEM sources. Vircator is known to be a low efficiency high power microwave source… Click to show full abstract
Uncertainty quantification and variability analysis are two domains of interest when looking at the efficiency of HPEM sources. Vircator is known to be a low efficiency high power microwave source subject to several generally volatile phenomena such as plasma expansion and shot-to-shot variability. In this study, a computationally low cost framework combining the Extreme Value Theory (EVT) and the Generalised Design of Experiments is proposed in order to study the peak power distribution of a Vircator obtained with a surrogate model. Following the pre-screening of random variables, the optimised parameters are introduced in 2.5D and 3D simulation tools, namely XOOPIC and CST-PS. It has been confirmed that the peak power output can reach a 40% increase. This shows that the EVT proves to be successful in classifying and quantifying random variables to influence the distribution tails.
               
Click one of the above tabs to view related content.