OBJECTIVE Increasing evidence indicated that microRNAs (miRNAs) are crucial regulators for cancer development. Bladder cancer (BCa) is a major threat to human health. The aim of this study was to… Click to show full abstract
OBJECTIVE Increasing evidence indicated that microRNAs (miRNAs) are crucial regulators for cancer development. Bladder cancer (BCa) is a major threat to human health. The aim of this study was to analyze the roles of miR-652-3p in BCa, and to explore the associated mechanisms. MATERIALS AND METHODS MiR-652-3p expression in BCa cell lines was explored using Real Time-quantitative Polymerase Chain Reaction (RT-qPCR) method. MiR-652-3p expression level in BCa tissues was explored at StarBase. Cell Counting Kit-8 (CCK-8) assay, wound-healing assay, and transwell invasion assay were conducted to investigate the biological roles of miR-652-3p. The underlying mechanisms of miR-652-3p in NSCLC were investigated using luciferase activity reporter assay and rescue experiments. RESULTS We showed that miR-652-3p expression level was upregulated in both BCa tissues and cell lines. The knockdown of miR-652-3p significantly inhibited BCa cell proliferation, migration, and invasion in vitro. Moreover, we showed that potassium intermediate/small conductance calcium-activated channel, subfamily N, member 3 (KCNN3) was a functional target for miR-652-3p. Besides, the expression of KCNN3 in BCa tissues was negatively correlated with miR-652-3p. CONCLUSIONS Collectively, these results showed that miR-652-3p could promote BCa cell proliferation, migration, and invasion via directly regulating KCNN3, which may provide a novel therapeutic target for BCa treatment.
               
Click one of the above tabs to view related content.