LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mechanism of metformin enhancing the sensitivity of human pancreatic cancer cells to gem-citabine by regulating the PI3K/Akt/mTOR signaling pathway.

Photo by ilzelucero from unsplash

OBJECTIVE To investigate the effect of metformin (MET) on enhancing the sensitivity of human pancreatic cancer cells to gemcitabine (GEM) by regulating the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of… Click to show full abstract

OBJECTIVE To investigate the effect of metformin (MET) on enhancing the sensitivity of human pancreatic cancer cells to gemcitabine (GEM) by regulating the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway. MATERIALS AND METHODS The GEM-resistant human pancreatic cancer PANC-1/GEM cell line was established, and the proliferation ability of PANC-1 and PANC-1/GEM cell lines was detected using the Cell Counting Kit-8 (CCK-8), which was then detected by flow cytometry after they were labeled by Ki67. Quantitative Reverse Transcription-Polymerase Chain Reaction (qRT-PCR) and Western blotting were adopted to detect the difference in the mTOR expression between PANC-1 and PANC-1/GEM cell lines. The proliferation ability of PANC-1/GEM/MET and PANC-1/GEM cell lines was determined using CCK-8 after drug-resistant cell lines were treated with 20 mmol/L MET combined with 0.4 μmol/L GEM or 0.4 μmol/L GEM alone for 48 h. Colony formation assay was applied to detect the proliferation ability of cells. The difference in the expression of mTOR/PI3K/Akt between PANC-1/GEM/MET and PANC-1/GEM cell lines was tested via qRT-PCR and Western blotting, respectively. RESULTS Compared with PANC-1 cells, PANC-1/GEM cells had significantly enhanced proliferation ability (p<0.01). Flow cytometry results showed that the proliferation ability of PANC-1/GEM cells was notably enhanced (p<0.01). The expression level and phosphorylation level of mTOR in drug-resistant cell lines were increased (p<0.01). After the drug-resistant cell lines were treated with 20 mmol/L MET for 48 h, the proliferation ability of PANC-1/GEM/MET cells was evidently decreased compared with that of PANC-1/GEM cells (p<0.01). The messenger ribonucleic acid (mRNA) and protein expression levels of mTOR/PI3K/Akt were markedly down-regulated (p<0.01). CONCLUSIONS MET can regulate the PI3K/Akt/mTOR signaling pathway to enhance the sensitivity of human pancreatic cancer cells to GEM.

Keywords: gem; cell lines; panc gem; mtor; panc

Journal Title: European review for medical and pharmacological sciences
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.