LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

In vitro assessment of the DNA damage and senility of CD117+ stem cells collected from diabetic mice.

OBJECTIVE Angiogenesis impairment is a common feature of diabetes mellitus (DM), whereas CD117+ bone marrow cells (BMCs) injury might be responsible for such complication. In this study, we studied the effect of hyperglycemia on… Click to show full abstract

OBJECTIVE Angiogenesis impairment is a common feature of diabetes mellitus (DM), whereas CD117+ bone marrow cells (BMCs) injury might be responsible for such complication. In this study, we studied the effect of hyperglycemia on the DNA damage and senility of CD117+ bone marrow cells. MATERIALS AND METHODS We isolated CD117+ BMCs from the Streptozotocin (STZ) induced diabetes and healthy control mice. Oxidative stress was detected by flow cytometric analysis. γ-H2AX, which is the DNA damage mark, was detected by using Western blotting and immunofluorescence histochemistry. We also detected the expression of γ-H2AX and p16 by using Western blotting. RESULTS Compared with the control mice, the level of reactive oxygen species (ROS) was increased significantly in the CD117+ BMCs collected from the diabetic mice (p<0.05), and the percentage of γ-H2AX positive cells was higher significantly (p<0.01). The expression of γ-H2AX and p16 was increased significantly in the CD117+ BMCs from the diabetic mice. CONCLUSIONS Our experiments demonstrated the oxidative stress in CD117+ BMCs under DM conditions, while accelerating the DNA damage and senility in CD117+ BMCs as well.

Keywords: dna damage; damage senility; cd117; mice

Journal Title: European review for medical and pharmacological sciences
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.