LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

d-amino acid oxidase promotes cellular senescence via the production of reactive oxygen species

Photo from wikipedia

This study reveals a novel role of d-amino acid oxidase in promoting cellular senescence induced by genotoxic stresses via enzymatic generation of reactive oxygen species. d-amino acid oxidase (DAO) is… Click to show full abstract

This study reveals a novel role of d-amino acid oxidase in promoting cellular senescence induced by genotoxic stresses via enzymatic generation of reactive oxygen species. d-amino acid oxidase (DAO) is a flavin adenine dinucleotide (FAD)–dependent oxidase metabolizing neutral and polar d-amino acids. Unlike l-amino acids, the amounts of d-amino acids in mammalian tissues are extremely low, and therefore, little has been investigated regarding the physiological role of DAO. We have recently identified DAO to be up-regulated in cellular senescence, a permanent cell cycle arrest induced by various stresses, such as persistent DNA damage and oxidative stress. Because DAO produces reactive oxygen species (ROS) as byproducts of substrate oxidation and the accumulation of ROS mediates the senescence induction, we explored the relationship between DAO and senescence. We found that inhibition of DAO impaired senescence induced by DNA damage, and ectopic expression of wild-type DAO, but not enzymatically inactive mutant, enhanced it in an ROS-dependent manner. Furthermore, addition of d-amino acids and riboflavin, a metabolic precursor of FAD, to the medium potentiated the senescence-promoting effect of DAO. These results indicate that DAO promotes senescence through the enzymatic ROS generation, and its activity is regulated by the availability of its substrate and coenzyme.

Keywords: acid oxidase; amino acid; senescence; dao; cellular senescence

Journal Title: Life Science Alliance
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.