LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

MagnEdit—interacting factors that recruit DNA-editing enzymes to single base targets

This study reports a new, non-covalent strategy—called MagnEdit—that attracts the DNA cytosine deaminase APOBEC3B to a Cas9-directed site for C-to-T editing. Although CRISPR/Cas9 technology has created a renaissance in genome… Click to show full abstract

This study reports a new, non-covalent strategy—called MagnEdit—that attracts the DNA cytosine deaminase APOBEC3B to a Cas9-directed site for C-to-T editing. Although CRISPR/Cas9 technology has created a renaissance in genome engineering, particularly for gene knockout generation, methods to introduce precise single base changes are also highly desirable. The covalent fusion of a DNA-editing enzyme such as APOBEC to a Cas9 nickase complex has heightened hopes for such precision genome engineering. However, current cytosine base editors are prone to undesirable off-target mutations, including, most frequently, target-adjacent mutations. Here, we report a method to “attract” the DNA deaminase, APOBEC3B, to a target cytosine base for specific editing with minimal damage to adjacent cytosine bases. The key to this system is fusing an APOBEC-interacting protein (not APOBEC itself) to Cas9n, which attracts nuclear APOBEC3B transiently to the target site for editing. Several APOBEC3B interactors were tested and one, hnRNPUL1, demonstrated proof-of-concept with successful C-to-T editing of episomal and chromosomal substrates and lower frequencies of target-adjacent events.

Keywords: magnedit interacting; dna editing; base; single base; interacting factors

Journal Title: Life Science Alliance
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.