LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

circEXOC5 promotes acute lung injury through the PTBP1/Skp2/Runx2 axis to activate autophagy

circEXOC5 activates autophagy and promotes acute lung injury via stimulating the Skp2 decay to stabilize Runx2 by interacting with PTBP1. To understand the pathogenesis of acute lung injury (ALI), we… Click to show full abstract

circEXOC5 activates autophagy and promotes acute lung injury via stimulating the Skp2 decay to stabilize Runx2 by interacting with PTBP1. To understand the pathogenesis of acute lung injury (ALI), we focused on circEXOC5, a significantly up-regulated circular RNA in ALI. Using the in vivo cecal ligation and puncture (CLP)–induced ALI mouse model and in vitro LPS-challenged mouse pulmonary microvascular endothelial cell (MPVEC) model, we examined the impacts of knockdown circEXOC5 on lung injury, inflammation, and autophagy. The regulation between circEXOC5, polypyrimidine tract-binding protein 1 (PTBP1), S-phase kinase-associated protein 2 (Skp2), and Runt-related transcription factor 2 (Runx2) was investigated by combining RNA immunoprecipitation, qRT–PCR, mRNA stability, and ubiquitination assays. The significance of PTBP1 in circEXOC5-induced ALI phenotypes was examined both in vitro and in vivo. circEXOC5 was up-regulated and associated with increased inflammation and activated autophagy in cecal ligation and puncture–induced ALI lung tissues and LPS-challenged MPVECs. Through the interaction with PTBP1, circEXOC5 accelerated Skp2 mRNA decay, an E3 ubiquitin ligase for Runx2, and therefore increased Runx2 expression. Functionally, overexpressing PTBP1 reversed shcircEXOC5-inhibited ALI, inflammation, or autophagy. The signaling cascade circEXOC5/PTBP1/Skp2/Runx2, by essentially regulating inflammation and autophagy in MPVECs, aggravates sepsis-induced ALI.

Keywords: circexoc5; ptbp1; runx2; lung injury

Journal Title: Life Science Alliance
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.