Abstract Among the potential contaminants, mycotoxins are of particular concern due to the importance in terms of food and feed safety. The difficulty in establishing a diagnosis for mycotoxicosis relies… Click to show full abstract
Abstract Among the potential contaminants, mycotoxins are of particular concern due to the importance in terms of food and feed safety. The difficulty in establishing a diagnosis for mycotoxicosis relies in the fact that the effects are subclinical, and that multicontamination by various toxins is the most common scenario. The co‐occurrence of these mycotoxins raises questions concerning both food safety and regulation. However, there is still limited knowledge on toxicity data on co‐exposure. The current technical report will describe the activities performed by the fellow in the LUBEM‐Brest University (France). In this context, the work programme offered by the hosting site consisted in vitro toxicological approaches to evaluate the toxicity of mycotoxin mixtures. The aim of this project was to assess human risk to the exposure of two main regulated mycotoxins (ochratoxin A and fumonisin B1) using different innovative cellular models (2D and 3D spheroids). In this framework, these mycotoxins were tested individually and as a combination on intestinal and hepatic cell lines alone or in co‐cultures. Overall, our results show the outstanding potential of using more predictive and realistic approaches for the risk assessment (RA) of mycotoxins. It is of high importance to pursue further toxicological characterisations and exposure evaluations for mycotoxins, in order to determine a more detailed RA. This will serve as a reference to understand multicontamination mechanism of mycotoxins at the cell level and help authority to revise regulation.
               
Click one of the above tabs to view related content.