LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

2-D Simulation with OH* Kinetics of a Single-Cycle Pulse Detonation Engine

Photo from wikipedia

Two-dimensional computational fluid dynamics (CFD) simulation with selected kinetics for H2–air mixture of a hydrogen-fuelled single-pulse detonation engine were performed through ANSYS FLUENT commercial software for diagnostic purposes. The results… Click to show full abstract

Two-dimensional computational fluid dynamics (CFD) simulation with selected kinetics for H2–air mixture of a hydrogen-fuelled single-pulse detonation engine were performed through ANSYS FLUENT commercial software for diagnostic purposes. The results were compared with Chapman–Jouguet (CJ) values calculated by the CEA (Chemical Equilibrium with Applications) and ZND (Zel’dovich–Neumann–Döring) codes. The CJ velocities and pressures, as the product velocities are in agreement, however, the CJ temperatures are too higher for 2-D simulations; as a consequence, the sound velocities were overpredicted. OH* kinetics added to the reaction set allowed visualization of the propagation front with several detonation cells showing a consistent multi-headed detonation propagating in the whole tube. The detonation front was slightly perturbed at the end of the tube with inclination of front edge and fewer cell numbers, and more significantly at the nozzle entrance with velocity reduction, resulting in a weak and unstable detonation. OH* images showed the detonation reaction zone decoupled from the shock front with disappearance of cellular structure. The inclusion of OH* reaction set for CFD simulation coupled to kinetics is demonstrated to be an excellent tool to follow the detonation propagation behaviour.

Keywords: simulation kinetics; pulse detonation; detonation engine; detonation; simulation

Journal Title: Journal of Applied Fluid Mechanics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.