LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

One-Step 18F-Labeling and Preclinical Evaluation of Prostate-Specific Membrane Antigen Trifluoroborate Probes for Cancer Imaging

Photo by nci from unsplash

After the identification of the high-affinity glutamate-ureido scaffold, the design of several potent 18F- and 68Ga-labeled tracers has allowed spectacular progress in imaging recurrent prostate cancer by targeting the prostate-specific… Click to show full abstract

After the identification of the high-affinity glutamate-ureido scaffold, the design of several potent 18F- and 68Ga-labeled tracers has allowed spectacular progress in imaging recurrent prostate cancer by targeting the prostate-specific membrane antigen (PSMA). We evaluated a series of PSMA-targeting probes that are 18F-labeled in a single step for PET imaging of prostate cancer. Methods: We prepared 8 trifluoroborate constructs for prostate cancer imaging, to study the influence of the linker and the trifluoroborate prosthetic on pharmacokinetics and image quality. After 1-step labeling by 19F–18F isotopic exchange, the radiotracers were injected in mice bearing LNCaP xenografts, with or without blocking controls, to assess specific uptake. PET/CT images and biodistribution data were acquired at 1 h after injection and compared with 18F-DCFPyL on the same mouse strain and tumor model. Results: All tracers exhibited nanomolar affinities, were labeled in good radiochemical yields at high molar activities, and exhibited high tumor uptake in LNCaP xenografts with clearance from nontarget organs. Most derivatives with a naphthylalanine linker showed significant gastrointestinal excretion. A radiotracer incorporating this linker with a dual trifluoroborate-glutamate labeling moiety showed high tumor uptake, low background activity, and no liver or gastrointestinal track accumulation. Conclusion: PSMA-targeting probes with trifluoroborate prosthetic groups represent promising candidates for prostate cancer imaging because of facile labeling while affording high tumor uptake values and contrast ratios that are similar to those obtained with 18F-DCFPyL.

Keywords: step; trifluoroborate; prostate cancer; cancer imaging; cancer

Journal Title: Journal of Nuclear Medicine
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.