LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Optimal singularities of initial functions for solvability of a semilinear parabolic system

Photo from academic.microsoft.com

Let $(u,v)$ be a nonnegative solution to the semilinear parabolic system \[ \mbox{(P)} \qquad \cases{ \partial_t u=D_1\Delta u+v^p, & $x\in{\bf R}^N,\,\,\,t>0,$\\ \partial_t v=D_2\Delta v+u^q, & $x\in{\bf R}^N,\,\,\,t>0,$\\ (u(\cdot,0),v(\cdot,0))=(\mu,\nu), & $x\in{\bf… Click to show full abstract

Let $(u,v)$ be a nonnegative solution to the semilinear parabolic system \[ \mbox{(P)} \qquad \cases{ \partial_t u=D_1\Delta u+v^p, & $x\in{\bf R}^N,\,\,\,t>0,$\\ \partial_t v=D_2\Delta v+u^q, & $x\in{\bf R}^N,\,\,\,t>0,$\\ (u(\cdot,0),v(\cdot,0))=(\mu,\nu), & $x\in{\bf R}^N,$ } \] where $D_1$, $D_2>0$, $0 1$ and $(\mu,\nu)$ is a pair of nonnegative Radon measures or nonnegative measurable functions in ${\bf R}^N$. In this paper we study sufficient conditions on the initial data for the solvability of problem~(P) and clarify optimal singularities of the initial functions for the solvability.

Keywords: semilinear parabolic; initial functions; parabolic system; optimal singularities; singularities initial; functions solvability

Journal Title: Journal of the Mathematical Society of Japan
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.